首页> 外文OA文献 >A Bayesian approach for adaptive multiantenna sensing in cognitive radio networks
【2h】

A Bayesian approach for adaptive multiantenna sensing in cognitive radio networks

机译:认知无线电网络中自适应多天线感应的贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Much of the recent work on multiantenna spectrum sensing in cognitive radio (CR) networks has been based on generalized likelihood ratio test (GLRT) detectors, which lack the ability to learn from past decisions and to adapt to the continuously changing environment. To overcome this limitation, in this paper we propose a Bayesian detector capable of learning in an efficient way the posterior distributions under both hypotheses. These posteriors summarize, in a compact way, all information seen so far by the cognitive secondary user. Our Bayesian model places priors directly on the spatial covariance matrices under both hypothesis, as well as on the probability of channel occupancy. Specifically, we use inverse-gamma and complex inverse-Wishart distributions as conjugate priors for the null and alternative hypothesis, respectively; and a binomial distribution as the prior for channel occupancy. At each sensing period, Bayesian inference is applied and the posterior for the channel occupancy is thresholded for detection. After a suitable approximation, the posteriors are employed as priors for the next sensing frame, which forms the basis of the proposed Bayesian learning procedure. We also include a forgetting mechanism that allows to operate satisfactorily on time-varying scenarios. The performance of the Bayesian detector is evaluated by simulations and also by means of CR testbed composed of universal radio peripheral (USRP) nodes. Both the simulations and our experimental measurements show that the Bayesian detector outperforms the GLRT in a variety of scenarios.
机译:认知无线电(CR)网络中有关多天线频谱感测的最新工作大部分是基于广义似然比测试(GLRT)检测器,该检测器缺乏从过去的决策中吸取经验并无法适应不断变化的环境的能力。为了克服这一局限性,本文提出了一种贝叶斯检测器,该贝叶斯检测器能够有效地学习两个假设下的后验分布。这些后代以紧凑的方式总结了认知第二用户迄今为止所看到的所有信息。我们的贝叶斯模型将先验直接放在两个假设下的空间协方差矩阵以及通道占用的概率上。具体来说,我们分别使用反伽玛分布和复杂反维沙特分布作为无效假设和替代假设的共轭先验。和二项式分布作为信道占用的先验。在每个感测周期,应用贝叶斯推断,并且将信道占用的后验阈值进行检测。在适当的近似之后,将后验作为下一个感测帧的先验,这构成了提出的贝叶斯学习过程的基础。我们还包括一个忘记机制,可以在时变情况下令人满意地运行。贝叶斯探测器的性能通过仿真以及由通用无线电外围设备(USRP)节点组成的CR测试台进行评估。模拟和我们的实验测量均表明,在各种情况下,贝叶斯检测器的性能均优于GLRT。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号